首页> 外文OA文献 >Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska
【2h】

Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

机译:模拟火灾严重程度和气候变暖对阿拉斯加内部整个景观中黑云杉森林活动层厚度和土壤碳存储的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m−2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.
机译:北方森林生态系统的多年冻土中储存了大量碳,目前不保护其分解。表面有机层使较深的土壤与大气温度的变化隔绝。通过燃烧消除这些隔热层,增加了永冻土融化的脆弱性,并使永冻土中存储的碳易于分解。在这项研究中,我们询问变暖和火灾状况如何影响阿拉斯加内部寒带森林景观中活动层的时空变化和碳动态。为了解决这个问题,我们(1)建立并测试了火灾严重程度对土壤有机层的影响的预测模型,该模型取决于景观水平条件;(2)使用该模型评估变暖和变化的长期后果在阿拉斯加内黑云杉林的活性层和土壤碳动力学上的火情。通过对实地观察的分析而设计的火灾严重性预测模型,再现了局部地形(地形类别,坡度,坡度和流量积聚),天气状况(干旱指数,土壤湿度)和火灾特征(火灾发生日)的影响。火灾的年份和大小)减少了由火灾引起的有机层。将火灾严重性模型集成到基于生态系统过程的模型中,使我们能够记录局部地形,火灾和活动层气候升温以及土壤碳动态之间的相对重要性和相互作用。与较干燥的平坦高地和斜坡相比,低地对大火和气候变暖的抵抗力更高,显示出活动层厚度和土壤碳损失的增加幅度较小。在包括区域规模变暖和火灾影响的模拟中,火灾主要是导致有机层厚度到2100年平均减少0.06 m,从而导致活动层厚度到2100年平均增加1.1 m 。到2100年,变暖和火灾的结合导致模拟的平均累积损失为9.6 kgC m-2。我们的分析表明,阿拉斯加内部寒带森林中的生态系统碳储存特别脆弱,这主要是由于有机层厚度的燃烧火灾以及相关活动层厚度的增加,使先前受保护的多年冻土土壤碳易于分解。

著录项

相似文献

  • 外文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号